Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{15+\sqrt{3}}{10\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{15+\sqrt{3}}{10\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15\sqrt{3}+3}{30} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{5\sqrt{3}+1}{10}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 15 + \sqrt{3}\right) } \cdot \sqrt{3} = \color{blue}{15} \cdot \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot \sqrt{3} = \\ = 15 \sqrt{3} + 3 $$ Simplify denominator. $$ \color{blue}{ 10 \sqrt{3} } \cdot \sqrt{3} = 30 $$ |
③ | Divide both numerator and denominator by 3. |