Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{15}{5\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{15}{5\sqrt{7}}\frac{\sqrt{7}}{\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15\sqrt{7}}{35} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 15 \sqrt{ 7 } : \color{blue}{ 5 } } { 35 : \color{blue}{ 5 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{7}}{7}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 15 } \cdot \sqrt{7} = 15 \sqrt{7} $$ Simplify denominator. $$ \color{blue}{ 5 \sqrt{7} } \cdot \sqrt{7} = 35 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 5 } $. |