Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{14}{\sqrt{32}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 14 }{\sqrt{ 32 }} \times \frac{ \color{orangered}{\sqrt{ 32 }} }{ \color{orangered}{\sqrt{ 32 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14\sqrt{32}}{32} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 14 \sqrt{ 16 \cdot 2 }}{ 32 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 14 \cdot 4 \sqrt{ 2 } }{ 32 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{56\sqrt{2}}{32} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 56 \sqrt{ 2 } : \color{blue}{ 8 } }{ 32 : \color{blue}{ 8 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{7\sqrt{2}}{4}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 32 }}$. |
② | In denominator we have $ \sqrt{ 32 } \cdot \sqrt{ 32 } = 32 $. |
③ | Simplify $ \sqrt{ 32 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 8 }$. |