Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{12}{\sqrt{160}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 12 }{\sqrt{ 160 }} \times \frac{ \color{orangered}{\sqrt{ 160 }} }{ \color{orangered}{\sqrt{ 160 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{160}}{160} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 12 \sqrt{ 16 \cdot 10 }}{ 160 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 12 \cdot 4 \sqrt{ 10 } }{ 160 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{48\sqrt{10}}{160} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 48 \sqrt{ 10 } : \color{blue}{ 16 } }{ 160 : \color{blue}{ 16 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{10}}{10}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 160 }}$. |
② | In denominator we have $ \sqrt{ 160 } \cdot \sqrt{ 160 } = 160 $. |
③ | Simplify $ \sqrt{ 160 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 16 }$. |