Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{12}{4\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{12}{4\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{2}}{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 12 \sqrt{ 2 } : \color{blue}{ 4 } } { 8 : \color{blue}{ 4 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{2}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 12 } \cdot \sqrt{2} = 12 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{2} } \cdot \sqrt{2} = 8 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 4 } $. |