Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{115}{\sqrt{125}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 115 }{\sqrt{ 125 }} \times \frac{ \color{orangered}{\sqrt{ 125 }} }{ \color{orangered}{\sqrt{ 125 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{115\sqrt{125}}{125} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 115 \sqrt{ 25 \cdot 5 }}{ 125 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 115 \cdot 5 \sqrt{ 5 } }{ 125 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{575\sqrt{5}}{125} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 575 \sqrt{ 5 } : \color{blue}{ 25 } }{ 125 : \color{blue}{ 25 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{23\sqrt{5}}{5}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 125 }}$. |
② | In denominator we have $ \sqrt{ 125 } \cdot \sqrt{ 125 } = 125 $. |
③ | Simplify $ \sqrt{ 125 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 25 }$. |