Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{11}{\sqrt{7}+5}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{11}{\sqrt{7}+5}\frac{\sqrt{7}-5}{\sqrt{7}-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{11\sqrt{7}-55}{7-5\sqrt{7}+5\sqrt{7}-25} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{11\sqrt{7}-55}{-18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-11\sqrt{7}+55}{18}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}-5} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 11 } \cdot \left( \sqrt{7}-5\right) = \color{blue}{11} \cdot \sqrt{7}+\color{blue}{11} \cdot-5 = \\ = 11 \sqrt{7}-55 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{7} + 5\right) } \cdot \left( \sqrt{7}-5\right) = \color{blue}{ \sqrt{7}} \cdot \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot-5+\color{blue}{5} \cdot \sqrt{7}+\color{blue}{5} \cdot-5 = \\ = 7- 5 \sqrt{7} + 5 \sqrt{7}-25 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |