Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{11}{\sqrt{12}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 11 }{\sqrt{ 12 }} \times \frac{ \color{orangered}{\sqrt{ 12 }} }{ \color{orangered}{\sqrt{ 12 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{11\sqrt{12}}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 11 \sqrt{ 4 \cdot 3 }}{ 12 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 11 \cdot 2 \sqrt{ 3 } }{ 12 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{22\sqrt{3}}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 22 \sqrt{ 3 } : \color{blue}{ 2 } }{ 12 : \color{blue}{ 2 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{11\sqrt{3}}{6}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 12 }}$. |
② | In denominator we have $ \sqrt{ 12 } \cdot \sqrt{ 12 } = 12 $. |
③ | Simplify $ \sqrt{ 12 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 2 }$. |