Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{100}{6\sqrt{15}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{100}{6\sqrt{15}}\frac{\sqrt{15}}{\sqrt{15}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{100\sqrt{15}}{90} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 100 \sqrt{ 15 } : \color{blue}{ 10 } } { 90 : \color{blue}{ 10 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{10\sqrt{15}}{9}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{15}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 100 } \cdot \sqrt{15} = 100 \sqrt{15} $$ Simplify denominator. $$ \color{blue}{ 6 \sqrt{15} } \cdot \sqrt{15} = 90 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 10 } $. |