Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{10}{\sqrt{50}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 10 }{\sqrt{ 50 }} \times \frac{ \color{orangered}{\sqrt{ 50 }} }{ \color{orangered}{\sqrt{ 50 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10\sqrt{50}}{50} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 10 \sqrt{ 25 \cdot 2 }}{ 50 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 10 \cdot 5 \sqrt{ 2 } }{ 50 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{50\sqrt{2}}{50} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 50 \sqrt{ 2 } : \color{blue}{ 50 } }{ 50 : \color{blue}{ 50 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\sqrt{2}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }\sqrt{2}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 50 }}$. |
② | In denominator we have $ \sqrt{ 50 } \cdot \sqrt{ 50 } = 50 $. |
③ | Simplify $ \sqrt{ 50 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 50 }$. |