Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{10}{(-1)^{0.5}((-1)^{0.5}+1)((-1)^{0.5}+2)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10}{(-1)^{0.5}\cdot(1+1)\cdot(1+2)} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{10}{(-1)^{0.5}\cdot2\cdot3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{10}{1\cdot2\cdot3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{10}{2\cdot3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{10}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}} \frac{ 10 : \color{orangered}{ 2 } }{ 6 : \color{orangered}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5}{3}\end{aligned} $$ | |
① | A non-zero polynomial raised to the power of 0 equals 1. |
② | A non-zero polynomial raised to the power of 0 equals 1. |
③ | A non-zero polynomial raised to the power of 0 equals 1. |
④ | $ 1 \cdot 2 = 2 $ |
⑤ | $ 2 \cdot 3 = 6 $ |
⑥ | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |