Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1-\sqrt{2}}{\sqrt{10}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1-\sqrt{2}}{\sqrt{10}}\frac{\sqrt{10}}{\sqrt{10}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{10}-2\sqrt{5}}{10}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{10}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 1- \sqrt{2}\right) } \cdot \sqrt{10} = \color{blue}{1} \cdot \sqrt{10}\color{blue}{- \sqrt{2}} \cdot \sqrt{10} = \\ = \sqrt{10}- 2 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \sqrt{10} } \cdot \sqrt{10} = 10 $$ |