Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1-\sqrt{2}}{1+\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1-\sqrt{2}}{1+\sqrt{2}}\frac{1-\sqrt{2}}{1-\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1-\sqrt{2}-\sqrt{2}+2}{1-\sqrt{2}+\sqrt{2}-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3-2\sqrt{2}}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-3+2\sqrt{2}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-3+2\sqrt{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 1- \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 1- \sqrt{2}\right) } \cdot \left( 1- \sqrt{2}\right) = \color{blue}{1} \cdot1+\color{blue}{1} \cdot- \sqrt{2}\color{blue}{- \sqrt{2}} \cdot1\color{blue}{- \sqrt{2}} \cdot- \sqrt{2} = \\ = 1- \sqrt{2}- \sqrt{2} + 2 $$ Simplify denominator. $$ \color{blue}{ \left( 1 + \sqrt{2}\right) } \cdot \left( 1- \sqrt{2}\right) = \color{blue}{1} \cdot1+\color{blue}{1} \cdot- \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot1+\color{blue}{ \sqrt{2}} \cdot- \sqrt{2} = \\ = 1- \sqrt{2} + \sqrt{2}-2 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |
⑤ | Remove 1 from denominator. |