Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{\sqrt{3}+2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{\sqrt{3}+2}\frac{\sqrt{3}-2}{\sqrt{3}-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{3}-2}{3-2\sqrt{3}+2\sqrt{3}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{3}-2}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-\sqrt{3}+2}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-\sqrt{3}+2\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}-2} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 1 } \cdot \left( \sqrt{3}-2\right) = \color{blue}{1} \cdot \sqrt{3}+\color{blue}{1} \cdot-2 = \\ = \sqrt{3}-2 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{3} + 2\right) } \cdot \left( \sqrt{3}-2\right) = \color{blue}{ \sqrt{3}} \cdot \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot-2+\color{blue}{2} \cdot \sqrt{3}+\color{blue}{2} \cdot-2 = \\ = 3- 2 \sqrt{3} + 2 \sqrt{3}-4 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |
⑤ | Remove 1 from denominator. |