Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{\sqrt{2}+5\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{\sqrt{2}+5\sqrt{7}}\frac{\sqrt{2}-5\sqrt{7}}{\sqrt{2}-5\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{2}-5\sqrt{7}}{2-5\sqrt{14}+5\sqrt{14}-175} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{2}-5\sqrt{7}}{-173} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-\sqrt{2}+5\sqrt{7}}{173}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}- 5 \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 1 } \cdot \left( \sqrt{2}- 5 \sqrt{7}\right) = \color{blue}{1} \cdot \sqrt{2}+\color{blue}{1} \cdot- 5 \sqrt{7} = \\ = \sqrt{2}- 5 \sqrt{7} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{2} + 5 \sqrt{7}\right) } \cdot \left( \sqrt{2}- 5 \sqrt{7}\right) = \color{blue}{ \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot- 5 \sqrt{7}+\color{blue}{ 5 \sqrt{7}} \cdot \sqrt{2}+\color{blue}{ 5 \sqrt{7}} \cdot- 5 \sqrt{7} = \\ = 2- 5 \sqrt{14} + 5 \sqrt{14}-175 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |