Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{\sqrt{29}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 1 }{\sqrt{ 29 }} \times \frac{ \color{orangered}{\sqrt{ 29 }} }{ \color{orangered}{\sqrt{ 29 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1\sqrt{29}}{29} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\sqrt{29}}{29}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 29 }}$. |
② | In denominator we have $ \sqrt{ 29 } \cdot \sqrt{ 29 } = 29 $. |