Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{14+6\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{14+6\sqrt{5}}\frac{14-6\sqrt{5}}{14-6\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{14-6\sqrt{5}}{196-84\sqrt{5}+84\sqrt{5}-180} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{14-6\sqrt{5}}{16} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{7-3\sqrt{5}}{8}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 14- 6 \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 1 } \cdot \left( 14- 6 \sqrt{5}\right) = \color{blue}{1} \cdot14+\color{blue}{1} \cdot- 6 \sqrt{5} = \\ = 14- 6 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( 14 + 6 \sqrt{5}\right) } \cdot \left( 14- 6 \sqrt{5}\right) = \color{blue}{14} \cdot14+\color{blue}{14} \cdot- 6 \sqrt{5}+\color{blue}{ 6 \sqrt{5}} \cdot14+\color{blue}{ 6 \sqrt{5}} \cdot- 6 \sqrt{5} = \\ = 196- 84 \sqrt{5} + 84 \sqrt{5}-180 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |