Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{13-3\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{13-3\sqrt{2}}\frac{13+3\sqrt{2}}{13+3\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{13+3\sqrt{2}}{169+39\sqrt{2}-39\sqrt{2}-18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{13+3\sqrt{2}}{151}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 13 + 3 \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 1 } \cdot \left( 13 + 3 \sqrt{2}\right) = \color{blue}{1} \cdot13+\color{blue}{1} \cdot 3 \sqrt{2} = \\ = 13 + 3 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \left( 13- 3 \sqrt{2}\right) } \cdot \left( 13 + 3 \sqrt{2}\right) = \color{blue}{13} \cdot13+\color{blue}{13} \cdot 3 \sqrt{2}\color{blue}{- 3 \sqrt{2}} \cdot13\color{blue}{- 3 \sqrt{2}} \cdot 3 \sqrt{2} = \\ = 169 + 39 \sqrt{2}- 39 \sqrt{2}-18 $$ |
③ | Simplify numerator and denominator |