Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1}{-4\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{-4\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{2}}{-8} \xlongequal{ } \\[1 em] & \xlongequal{ }-\frac{\sqrt{2}}{8}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 1 } \cdot \sqrt{2} = \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ - 4 \sqrt{2} } \cdot \sqrt{2} = -8 $$ |