Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{-6}{\sqrt{11}}& \xlongequal{ }-\frac{6}{\sqrt{11}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}- \, \frac{ 6 }{\sqrt{ 11 }} \times \frac{ \color{orangered}{\sqrt{ 11 }} }{ \color{orangered}{\sqrt{ 11 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{6\sqrt{11}}{11}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 11 }}$. |
② | In denominator we have $ \sqrt{ 11 } \cdot \sqrt{ 11 } = 11 $. |