Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{-2}{10-\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-2}{10-\sqrt{3}}\frac{10+\sqrt{3}}{10+\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-20-2\sqrt{3}}{100+10\sqrt{3}-10\sqrt{3}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-20-2\sqrt{3}}{97}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 10 + \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ -2 } \cdot \left( 10 + \sqrt{3}\right) = \color{blue}{-2} \cdot10\color{blue}{-2} \cdot \sqrt{3} = \\ = -20- 2 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \left( 10- \sqrt{3}\right) } \cdot \left( 10 + \sqrt{3}\right) = \color{blue}{10} \cdot10+\color{blue}{10} \cdot \sqrt{3}\color{blue}{- \sqrt{3}} \cdot10\color{blue}{- \sqrt{3}} \cdot \sqrt{3} = \\ = 100 + 10 \sqrt{3}- 10 \sqrt{3}-3 $$ |
③ | Simplify numerator and denominator |