Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{-\frac{2^1}{3}}{\frac{18^1}{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-\frac{2}{3}}{\frac{18}{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{ -\frac{2}{3} }{ \frac{ 18 : \color{orangered}{ 3 } }{ 3 : \color{orangered}{ 3 }} } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-\frac{2}{3}}{\frac{6}{1}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{-\frac{2}{3}}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{-\frac{1}{3}}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}-\frac{1}{9}\end{aligned} $$ | |
① | A polynomial raised to the power of one equals itself. |
② | A polynomial raised to the power of one equals itself. |
③ | A polynomial raised to the power of one equals itself. |
④ | Divide both the top and bottom numbers by $ \color{orangered}{ 3 } $. |
⑤ | A polynomial raised to the power of one equals itself. |
⑥ | A polynomial raised to the power of one equals itself. |
⑦ | Remove 1 from denominator. |
⑧ | Divide both numerator and denominator by 2. |
⑨ | To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. $$ \begin{aligned} \frac{ \frac{-1}{3} }{3} = \frac{-1}{3} \cdot \frac{\color{blue}{1}}{\color{blue}{3}} = \frac{-1}{9} \end{aligned} $$ |