Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{-18}{\sqrt{6}}& \xlongequal{ }-\frac{18}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}- \, \frac{ 18 }{\sqrt{ 6 }} \times \frac{ \color{orangered}{\sqrt{ 6 }} }{ \color{orangered}{\sqrt{ 6 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{18\sqrt{6}}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}- \, \frac{ 18 \sqrt{ 6 } : \color{blue}{ 6 } }{ 6 : \color{blue}{ 6 } } \xlongequal{ } \\[1 em] & \xlongequal{ }-\frac{3\sqrt{6}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }-3\sqrt{6}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 6 }}$. |
② | In denominator we have $ \sqrt{ 6 } \cdot \sqrt{ 6 } = 6 $. |
③ | Divide both the top and bottom numbers by $ \color{blue}{ 6 }$. |