Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{-14}{9\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-14}{9\sqrt{7}}\frac{\sqrt{7}}{\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-14\sqrt{7}}{63} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ -14 \sqrt{ 7 } : \color{blue}{ 7 } } { 63 : \color{blue}{ 7 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{-2\sqrt{7}}{9}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ -14 } \cdot \sqrt{7} = - 14 \sqrt{7} $$ Simplify denominator. $$ \color{blue}{ 9 \sqrt{7} } \cdot \sqrt{7} = 63 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 7 } $. |