Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{-14}{2\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-14}{2\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-14\sqrt{3}}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ -14 \sqrt{ 3 } : \color{blue}{ 2 } } { 6 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{-7\sqrt{3}}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ -14 } \cdot \sqrt{3} = - 14 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{3} } \cdot \sqrt{3} = 6 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |