Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{18}}{\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{18}}{\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6}{2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 6 : \color{orangered}{ 2 } }{ 2 : \color{orangered}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}3\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{18} } \cdot \sqrt{2} = 6 $$ Simplify denominator. $$ \color{blue}{ \sqrt{2} } \cdot \sqrt{2} = 2 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |
④ | Remove 1 from denominator. |