Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3\sqrt{3}}{4\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{3}}{4\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 9 : \color{orangered}{ 3 } }{ 12 : \color{orangered}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3}{4}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{3} } \cdot \sqrt{3} = 9 $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{3} } \cdot \sqrt{3} = 12 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 3 } $. |