STEP 1: find base diagonal $ d $
To find base diagonal $ d $ use formula:
$$ d = \sqrt{ 2 } \cdot a $$After substituting $ a = 6 $ we have:
$$ d = \sqrt{ 2 } \cdot 6 $$ $$ d = 6 \sqrt{ 2 } $$STEP 2: find height $ h $
To find height $ h $ use Pythagorean Theorem:
$$ h^2 + \frac{ d^2 }{ 4 } = e^2 $$After substituting $ d = 6 \sqrt{ 2 } $ and $ e = 7.5 $ we have:
$$ h ^ {\,2} + \frac{ \left(6 \sqrt{ 2 }\right)^2 }{ 4 } = 7.5^2 $$ $$ h ^ {\,2} + \frac{ 72 }{ 4 } = 7.5^2 $$ $$ h ^ {\,2} + 18 = 7.5^2 $$ $$ h ^ {\,2} = 56.25 - 18 $$ $$ h ^ {\,2} = 38.25 $$ $$ h = \sqrt{ 38.25 } $$$$ h = 6.1847 $$STEP 3: find volume $ V $
To find volume $ V $ use formula:
$$ V = \dfrac{ a ^{ 2 } \cdot h }{ 3 } $$After substituting $ a = 6 $ and $ h = 6.1847 $ we have:
$$ V = \dfrac{ 36 \cdot 6.1847 }{ 3 }$$$$ V = \dfrac{ 222.6477 }{ 3 } $$$$ V = 74.2159 $$