STEP 1: find height $ h $
To find height $ h $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $ a = 20 $ and $ s = 28 $ we have:
$$ h ^ {\,2} + \frac{ 20^2 }{ 4 } = 28^2 $$ $$ h ^ {\,2} + \frac{ 400 }{ 4 } = 28^2 $$ $$ h ^ {\,2} + 100 = 28^2 $$ $$ h ^ {\,2} = 784 - 100 $$ $$ h ^ {\,2} = 684 $$ $$ h = \sqrt{ 684 } $$$$ h = 6 \sqrt{ 19 } $$STEP 2: find volume $ V $
To find volume $ V $ use formula:
$$ V = \dfrac{ a ^{ 2 } \cdot h }{ 3 } $$After substituting $ a = 20 $ and $ h = 6 \sqrt{ 19 } $ we have:
$$ V = \dfrac{ 400 \cdot 6 \sqrt{ 19 } }{ 3 }$$$$ V = \dfrac{ 2400 \sqrt{ 19 } }{ 3 } $$$$ V = 800 \sqrt{ 19 } $$