STEP 1: find base diagonal $ d $
To find base diagonal $ d $ use formula:
$$ d = \sqrt{ 2 } \cdot a $$After substituting $a = 12\, \text{cm}$ we have:
$$ d = \sqrt{ 2 } \cdot 12\, \text{cm} $$ $$ d = 12 \sqrt{ 2 }\, \text{cm} $$STEP 2: find height $ h $
To find height $ h $ use Pythagorean Theorem:
$$ h^2 + \frac{ d^2 }{ 4 } = e^2 $$After substituting $d = 12 \sqrt{ 2 }\, \text{cm}$ and $e = 18\, \text{cm}$ we have:
$$ h ^ {\,2} + \frac{ \left( 12 \sqrt{ 2 }\, \text{cm} \right)^{2} }{ 4 } = \left( 18\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} + \frac{ 288\, \text{cm}^2 }{ 4 } = \left( 18\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} + 72\, \text{cm}^2 = \left( 18\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} = 324\, \text{cm}^2 - 72\, \text{cm}^2 $$ $$ h ^ {\,2} = 252\, \text{cm}^2 $$ $$ h = \sqrt{ 252\, \text{cm}^2 } $$$$ h = 6 \sqrt{ 7 }\, \text{cm} $$STEP 3: find volume $ V $
To find volume $ V $ use formula:
$$ V = \dfrac{ a ^{ 2 } \cdot h }{ 3 } $$After substituting $a = 12\, \text{cm}$ and $h = 6 \sqrt{ 7 }\, \text{cm}$ we have:
$$ V = \dfrac{ 144\, \text{cm}^2 \cdot 6 \sqrt{ 7 }\, \text{cm} }{ 3 }$$$$ V = \dfrac{ 864 \sqrt{ 7 }\, \text{cm}^3 }{ 3 } $$$$ V = 288 \sqrt{ 7 }\, \text{cm}^3 $$