STEP 1: find base diagonal $ d $
To find base diagonal $ d $ use Pythagorean Theorem:
$$ h^2 + \frac{ d^2 }{ 4 } = e^2 $$After substituting $ h = 1 $ and $ e = 3 $ we have:
$$ 1^2 + \frac{ d^2 }{ 4 } = 3^2 $$ $$ \frac{ d^2 }{ 4 } = 3^2 - 1^2 $$ $$ \frac{ d^2 }{ 4 } = 9 - 1 $$ $$ d^2 = 8 \cdot 4 $$ $$ d^2 = 32 $$ $$ d = \sqrt{ 32 } $$$$ d = 4 \sqrt{ 2 } $$STEP 2: find side $ a $
To find side $ a $ use formula:
$$ d = \sqrt{ 2 } \cdot a $$After substituting $ d = 4 \sqrt{ 2 } $ we have:
$$ 4 \sqrt{ 2 } = \sqrt{ 2 } \cdot a $$ $$ a = \dfrac{ 4 \sqrt{ 2 } }{ \sqrt{ 2 } } $$ $$ a = 4 $$STEP 3: find slant height $ s $
To find slant height $ s $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $ h = 1 $ and $ a = 4 $ we have:
$$ 1^2 + \frac{ 4^2 }{ 4 }= s^2 $$ $$ 1 + \frac{ 16 }{ 4 }= s^2 $$ $$ 1 + 4 = s^2 $$ $$ s^2 = 5 $$ $$ s = \sqrt{ 5 } $$