STEP 1: find side $ a $
To find side $ a $ use formula:
$$ r = \dfrac{ a }{ 2 } $$After substituting $ r = 5 $ we have:
$$ 5 = \dfrac{ a }{ 2 } $$ $$ a = 5 \cdot 2 $$ $$ a = 10 $$STEP 2: find base area $ B $
To find base area $ B $ use formula:
$$ B = a^2 $$After substituting $ a = 10 $ we have:
$$ B = 10^2 $$ $$ B = 100 $$STEP 3: find lateral surface $ L $
To find lateral surface $ L $ use formula:
$$ A = B + L $$After substituting $ A = 125 $ and $ B = 100 $ we have:
$$ 125 = 100 + L $$ $$ L = 125 - 100 $$ $$ L = 25 $$STEP 4: find slant height $ s $
To find slant height $ s $ use formula:
$$ L = 2 \cdot a \cdot s $$After substituting $ L = 25 $ and $ a = 10 $ we have:
$$ 25 = 2 \cdot 10 \cdot s $$$$ 25 = 20 \cdot s $$$$ s = \dfrac{ 25 }{ 20 } $$$$ s = \frac{ 5 }{ 4 } $$STEP 5: find height $ h $
To find height $ h $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $ a = 10 $ and $ s = \frac{ 5 }{ 4 } $ we have:
$$ h ^ {\,2} + \frac{ 10^2 }{ 4 } = \left(\frac{ 5 }{ 4 }\right)^2 $$ $$ h ^ {\,2} + \frac{ 100 }{ 4 } = \left(\frac{ 5 }{ 4 }\right)^2 $$ $$ h ^ {\,2} + 25 = \left(\frac{ 5 }{ 4 }\right)^2 $$ $$ h ^ {\,2} = \frac{ 25 }{ 16 } - 25 $$ $$ h ^ {\,2} = -\frac{ 375 }{ 16 } $$This equation has no solution $ \Longrightarrow $ The problem has no solution.