STEP 1: find base diagonal $ d $
To find base diagonal $ d $ use formula:
$$ d = \sqrt{ 2 } \cdot a $$After substituting $a = 16\, \text{cm}$ we have:
$$ d = \sqrt{ 2 } \cdot 16\, \text{cm} $$ $$ d = 16 \sqrt{ 2 }\, \text{cm} $$STEP 2: find height $ h $
To find height $ h $ use Pythagorean Theorem:
$$ h^2 + \frac{ d^2 }{ 4 } = e^2 $$After substituting $d = 16 \sqrt{ 2 }\, \text{cm}$ and $e = 2 \sqrt{ 41 }\, \text{cm}$ we have:
$$ h ^ {\,2} + \frac{ \left( 16 \sqrt{ 2 }\, \text{cm} \right)^{2} }{ 4 } = \left( 2 \sqrt{ 41 }\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} + \frac{ 512\, \text{cm}^2 }{ 4 } = \left( 2 \sqrt{ 41 }\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} + 128\, \text{cm}^2 = \left( 2 \sqrt{ 41 }\, \text{cm} \right)^{2} $$ $$ h ^ {\,2} = 164\, \text{cm}^2 - 128\, \text{cm}^2 $$ $$ h ^ {\,2} = 36\, \text{cm}^2 $$ $$ h = \sqrt{ 36\, \text{cm}^2 } $$$$ h = 6\, \text{cm} $$