STEP 1: find slant height $ s $
To find slant height $ s $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $h = 17\, \text{cm}$ and $a = 13\, \text{cm}$ we have:
$$ \left( 17\, \text{cm} \right)^{2} + \frac{ \left( 13\, \text{cm} \right)^{2} }{ 4 }= s^2 $$ $$ 289\, \text{cm}^2 + \frac{ 169\, \text{cm}^2 }{ 4 }= s^2 $$ $$ 289\, \text{cm}^2 + \frac{ 169 }{ 4 }\, \text{cm}^2 = s^2 $$ $$ s^2 = \frac{ 1325 }{ 4 }\, \text{cm}^2 $$ $$ s = \sqrt{ \frac{ 1325 }{ 4 }\, \text{cm}^2 } $$$$ s = \frac{ 5 \sqrt{ 53}}{ 2 }\, \text{cm} $$STEP 2: find lateral surface $ L $
To find lateral surface $ L $ use formula:
$$ L = 2 \cdot a \cdot s $$After substituting $a = 13\, \text{cm}$ and $s = \dfrac{ 5 \sqrt{ 53}}{ 2 }\, \text{cm}$ we have:
$$ L = 26\, \text{cm} \cdot \frac{ 5 \sqrt{ 53}}{ 2 }\, \text{cm} $$$$ L = 65 \sqrt{ 53 }\, \text{cm}^2 $$