To find side $ a $ use Pythagorean Theorem:
$$ s^2 + \frac{ a^2 }{ 4 } = e^2 $$After substituting $s = 24\, \text{cm}$ and $e = 26\, \text{cm}$ we have:
$$ \left( 24\, \text{cm} \right)^{2} + \frac{ a^2 }{ 4 } = \left( 26\, \text{cm} \right)^{2} $$ $$ \frac{ a^2 }{ 4 } = \left( 26\, \text{cm} \right)^{2} - \left( 24\, \text{cm} \right)^{2} $$ $$ \frac{ a^2 }{ 4 } = 676\, \text{cm}^2 - 576\, \text{cm}^2 $$ $$ a^2 = 100\, \text{cm}^2 \cdot 4 $$ $$ a^2 = 400\, \text{cm}^2 $$ $$ a = \sqrt{ 400\, \text{cm}^2 } $$$$ a = 20\, \text{cm} $$