To find side $ a $ use Pythagorean Theorem:
$$ h^2 + \frac{ a^2 }{ 4 } = s^2 $$After substituting $h = 35\, \text{cm}$ and $s = 37\, \text{cm}$ we have:
$$ \left( 35\, \text{cm} \right)^{2} + \frac{ a^2 }{ 4 } = \left( 37\, \text{cm} \right)^{2} $$ $$ \frac{ a^2 }{ 4 } = \left( 37\, \text{cm} \right)^{2} - \left( 35\, \text{cm} \right)^{2} $$ $$ \frac{ a^2 }{ 4 } = 1369\, \text{cm}^2 - 1225\, \text{cm}^2 $$ $$ a^2 = 144\, \text{cm}^2 \cdot 4 $$ $$ a^2 = 576\, \text{cm}^2 $$ $$ a = \sqrt{ 576\, \text{cm}^2 } $$$$ a = 24\, \text{cm} $$