We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|c|}\hline & \color{blue}{x^5} & \color{blue}{x^2} & \color{blue}{x} & \color{blue}{1} \\ \hline \color{blue}{x^3} & & & & \\ \hline \color{blue}{1} & & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|c|}\hline & \color{blue}{x^5} & \color{blue}{x^2} & \color{blue}{x} & \color{blue}{1} \\ \hline \color{blue}{x^3} & \color{orangered}{x^8} & \color{orangered}{x^5} & \color{orangered}{x^4} & \color{orangered}{x^3} \\ \hline \color{blue}{1} & \color{orangered}{x^5} & \color{orangered}{x^2} & \color{orangered}{x} & \color{orangered}{1} \\ \hline \end{darray} $$Combine like terms:
$$ x^8 + x^5 + x^5 + x^4 + x^2 + x^3 + x + 1 = \\ x^8+2x^5+x^4+x^3+x^2+x+1 $$