Step 1: First we have to write polynomials in descending order.
$$ \begin{aligned} P(x) &= x^2-1 \\ Q(x) &= x^2+x-42 \\ \end{aligned} $$We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{x^2} & \color{blue}{x} & \color{blue}{-42} \\ \hline \color{blue}{x^2} & & & \\ \hline \color{blue}{-1} & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{x^2} & \color{blue}{x} & \color{blue}{-42} \\ \hline \color{blue}{x^2} & \color{orangered}{x^4} & \color{orangered}{x^3} & \color{orangered}{-42x^2} \\ \hline \color{blue}{-1} & \color{orangered}{-x^2} & \color{orangered}{-x} & \color{orangered}{42} \\ \hline \end{darray} $$Combine like terms:
$$ x^4 + x^3-x^2-42x^2-x + 42 = \\ x^4+x^3-43x^2-x+42 $$