Step 1: First we have to write polynomials in descending order.
$$ \begin{aligned} P(x) &= x^2-x-2 \\ Q(x) &= 3x-6 \\ \end{aligned} $$We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{x^2} & \color{blue}{-x} & \color{blue}{-2} \\ \hline \color{blue}{3x} & & & \\ \hline \color{blue}{-6} & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{x^2} & \color{blue}{-x} & \color{blue}{-2} \\ \hline \color{blue}{3x} & \color{orangered}{3x^3} & \color{orangered}{-3x^2} & \color{orangered}{-6x} \\ \hline \color{blue}{-6} & \color{orangered}{-6x^2} & \color{orangered}{6x} & \color{orangered}{12} \\ \hline \end{darray} $$Combine like terms:
$$ 3x^3-3x^2-6x^2-6x + 6x + 12 = \\ 3x^3-9x^2+12 $$