We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|c|}\hline & \color{blue}{6x^3} & \color{blue}{x^2} & \color{blue}{9x} & \color{blue}{15} \\ \hline \color{blue}{-x^3} & & & & \\ \hline \color{blue}{-x} & & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|c|}\hline & \color{blue}{6x^3} & \color{blue}{x^2} & \color{blue}{9x} & \color{blue}{15} \\ \hline \color{blue}{-x^3} & \color{orangered}{-6x^6} & \color{orangered}{-x^5} & \color{orangered}{-9x^4} & \color{orangered}{-15x^3} \\ \hline \color{blue}{-x} & \color{orangered}{-6x^4} & \color{orangered}{-x^3} & \color{orangered}{-9x^2} & \color{orangered}{-15x} \\ \hline \end{darray} $$Combine like terms:
$$ -6x^6-x^5-6x^4-9x^4-x^3-15x^3-9x^2-15x = \\ -6x^6-x^5-15x^4-16x^3-9x^2-15x $$