In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 5x-3}\right) \cdot \left( \color{orangered}{ 5x+11}\right) &= \underbrace{ \color{blue}{5x} \cdot \color{orangered}{5x} }_{\text{FIRST}} + \underbrace{ \color{blue}{5x} \cdot \color{orangered}{11} }_{\text{OUTER}} + \underbrace{ \left( \color{blue}{-3} \right) \cdot \color{orangered}{5x} }_{\text{INNER}} + \underbrace{ \left( \color{blue}{-3} \right) \cdot \color{orangered}{11} }_{\text{LAST}} = \\ &= 25x^2 + 55x + \left( -15x\right) + \left( -33\right) = \\ &= 25x^2 + 55x + \left( -15x\right) + \left( -33\right) = \\ &= 25x^2+40x-33; \end{aligned} $$