We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{5k^3} & \color{blue}{3k^2} & \color{blue}{-2k} \\ \hline \color{blue}{-8k^3} & & & \\ \hline \color{blue}{-20k} & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{5k^3} & \color{blue}{3k^2} & \color{blue}{-2k} \\ \hline \color{blue}{-8k^3} & \color{orangered}{-40k^6} & \color{orangered}{-24k^5} & \color{orangered}{16k^4} \\ \hline \color{blue}{-20k} & \color{orangered}{-100k^4} & \color{orangered}{-60k^3} & \color{orangered}{40k^2} \\ \hline \end{darray} $$Combine like terms:
$$ -40k^6-24k^5-100k^4 + 16k^4-60k^3 + 40k^2 = \\ -40k^6-24k^5-84k^4-60k^3+40k^2 $$