Step 1: First we have to write polynomials in descending order.
$$ \begin{aligned} P(x) &= 3x-4 \\ Q(x) &= -4x^2+3x+5 \\ \end{aligned} $$We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{-4x^2} & \color{blue}{3x} & \color{blue}{5} \\ \hline \color{blue}{3x} & & & \\ \hline \color{blue}{-4} & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{-4x^2} & \color{blue}{3x} & \color{blue}{5} \\ \hline \color{blue}{3x} & \color{orangered}{-12x^3} & \color{orangered}{9x^2} & \color{orangered}{15x} \\ \hline \color{blue}{-4} & \color{orangered}{16x^2} & \color{orangered}{-12x} & \color{orangered}{-20} \\ \hline \end{darray} $$Combine like terms:
$$ -12x^3 + 9x^2 + 16x^2 + 15x-12x-20 = \\ -12x^3+25x^2+3x-20 $$