In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 33x-10}\right) \cdot \left( \color{orangered}{ x^2+6}\right) &= \underbrace{ \color{blue}{33x} \cdot \color{orangered}{x^2} }_{\text{FIRST}} + \underbrace{ \color{blue}{33x} \cdot \color{orangered}{6} }_{\text{OUTER}} + \underbrace{ \left( \color{blue}{-10} \right) \cdot \color{orangered}{x^2} }_{\text{INNER}} + \underbrace{ \left( \color{blue}{-10} \right) \cdot \color{orangered}{6} }_{\text{LAST}} = \\ &= 33x^3 + 198x + \left( -10x^2\right) + \left( -60\right) = \\ &= 33x^3 + 198x + \left( -10x^2\right) + \left( -60\right) = \\ &= 33x^3-10x^2+198x-60; \end{aligned} $$