In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 2s+2}\right) \cdot \left( \color{orangered}{ 4s-1}\right) &= \underbrace{ \color{blue}{2s} \cdot \color{orangered}{4s} }_{\text{FIRST}} + \underbrace{ \color{blue}{2s} \cdot \left( \color{orangered}{-1} \right) }_{\text{OUTER}} + \underbrace{ \color{blue}{2} \cdot \color{orangered}{4s} }_{\text{INNER}} + \underbrace{ \color{blue}{2} \cdot \left( \color{orangered}{-1} \right) }_{\text{LAST}} = \\ &= 8s^2 + \left( -2s\right) + 8s + \left( -2\right) = \\ &= 8s^2 + \left( -2s\right) + 8s + \left( -2\right) = \\ &= 8s^2+6s-2; \end{aligned} $$