Step 1: First we have to write polynomials in descending order.
$$ \begin{aligned} P(x) &= 4i+1 \\ Q(x) &= -4i+1 \\ \end{aligned} $$In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 4i+1}\right) \cdot \left( \color{orangered}{ -4i+1}\right) &= \underbrace{ \color{blue}{4i} \cdot \left( \color{orangered}{-4i} \right) }_{\text{FIRST}} + \underbrace{ \color{blue}{4i} \cdot \color{orangered}{1} }_{\text{OUTER}} + \underbrace{ \color{blue}{1} \cdot \left( \color{orangered}{-4i} \right) }_{\text{INNER}} + \underbrace{ \color{blue}{1} \cdot \color{orangered}{1} }_{\text{LAST}} = \\ &= -16i^2 + 4i + \left( -4i\right) + 1 = \\ &= -16i^2 + 4i + \left( -4i\right) + 1 = \\ &= -16i^2+1; \end{aligned} $$