In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ -4x+6}\right) \cdot \left( \color{orangered}{ -2x+5}\right) &= \underbrace{ \left( \color{blue}{-4x} \right) \cdot \left( \color{orangered}{-2x} \right) }_{\text{FIRST}} + \underbrace{ \left( \color{blue}{-4x} \right) \cdot \color{orangered}{5} }_{\text{OUTER}} + \underbrace{ \color{blue}{6} \cdot \left( \color{orangered}{-2x} \right) }_{\text{INNER}} + \underbrace{ \color{blue}{6} \cdot \color{orangered}{5} }_{\text{LAST}} = \\ &= 8x^2 + \left( -20x\right) + \left( -12x\right) + 30 = \\ &= 8x^2 + \left( -20x\right) + \left( -12x\right) + 30 = \\ &= 8x^2-32x+30; \end{aligned} $$