In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 6x^2+2x}\right) \cdot \left( \color{orangered}{ -9x^2-10x}\right) &= \underbrace{ \color{blue}{6x^2} \cdot \left( \color{orangered}{-9x^2} \right) }_{\text{FIRST}} + \underbrace{ \color{blue}{6x^2} \cdot \left( \color{orangered}{-10x} \right) }_{\text{OUTER}} + \underbrace{ \color{blue}{2x} \cdot \left( \color{orangered}{-9x^2} \right) }_{\text{INNER}} + \underbrace{ \color{blue}{2x} \cdot \left( \color{orangered}{-10x} \right) }_{\text{LAST}} = \\ &= -54x^4 + \left( -60x^3\right) + \left( -18x^3\right) + \left( -20x^2\right) = \\ &= -54x^4 + \left( -60x^3\right) + \left( -18x^3\right) + \left( -20x^2\right) = \\ &= -54x^4-78x^3-20x^2; \end{aligned} $$