Step 1: First we have to write polynomials in descending order.
$$ \begin{aligned} P(x) &= 4a+2 \\ Q(x) &= 11a+2 \\ \end{aligned} $$In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 4a+2}\right) \cdot \left( \color{orangered}{ 11a+2}\right) &= \underbrace{ \color{blue}{4a} \cdot \color{orangered}{11a} }_{\text{FIRST}} + \underbrace{ \color{blue}{4a} \cdot \color{orangered}{2} }_{\text{OUTER}} + \underbrace{ \color{blue}{2} \cdot \color{orangered}{11a} }_{\text{INNER}} + \underbrace{ \color{blue}{2} \cdot \color{orangered}{2} }_{\text{LAST}} = \\ &= 44a^2 + 8a + 22a + 4 = \\ &= 44a^2 + 8a + 22a + 4 = \\ &= 44a^2+30a+4; \end{aligned} $$