In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ 2x+4}\right) \cdot \left( \color{orangered}{ x-3}\right) &= \underbrace{ \color{blue}{2x} \cdot \color{orangered}{x} }_{\text{FIRST}} + \underbrace{ \color{blue}{2x} \cdot \left( \color{orangered}{-3} \right) }_{\text{OUTER}} + \underbrace{ \color{blue}{4} \cdot \color{orangered}{x} }_{\text{INNER}} + \underbrace{ \color{blue}{4} \cdot \left( \color{orangered}{-3} \right) }_{\text{LAST}} = \\ &= 2x^2 + \left( -6x\right) + 4x + \left( -12\right) = \\ &= 2x^2 + \left( -6x\right) + 4x + \left( -12\right) = \\ &= 2x^2-2x-12; \end{aligned} $$